CD163+ Foamy Macrophages Are Associated with the Morphogenesis of Oral Verruciform Xanthoma through Angiogenesis by VEGF Expression: An Immunohistochemical Study

Author:

Shigeoka Manabu,Koma Yu-ichiro,Kodama Takayuki,Nishio MariORCID,Akashi Masaya,Yokozaki HiroshiORCID

Abstract

Oral verruciform xanthoma (OVX) is an uncommon benign lesion that is characterized histologically by the accumulation of several foamy macrophages in the lamina propria papillae. The pathogenesis of OVX has not been completely elucidated, although the significance of macrophage polarization (M1, tumor suppression; and M2, tumor promotion) and the contribution of M2 macrophages to angiogenesis are well established. This study investigated the role of foamy macrophages in OVX, with a focus on angiogenesis. Four patients who underwent surgical excision or total excisional biopsy for OVXs were enrolled in this study. We evaluated the expression of the macrophage markers CD68 (broad) and CD163 (M2) and the CD34-positive microvessel density (MVD) of OVXs. The foamy macrophages of all patients exhibited positivity to CD68 and CD163. We evaluated the MVD and the expression of the vascular endothelial growth factor (VEGF) based on histological architecture. The MVD of all OVX cases was significantly higher than that of the corresponding normal epithelia. Interestingly, the MVD of verrucous-type OVX cases was higher than that of the other type. VEGF was expressed on foamy macrophages in all cases. Overall, the foamy macrophages expressing CD163 were associated with the morphogenesis of OVX through the process of angiogenesis by VEGF expression.

Publisher

MDPI AG

Subject

General Dentistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vascular endothelial growth factor-mediated peritoneal neoangiogenesis in peritoneal dialysis;Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis;2021-04-07

2. Alteration of Macrophage Infiltrating Compartment: A Novel View on Oral Carcinogenesis;Pathobiology;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3