Optimization of the Sowing Unit of a Piezoelectrical Sensor Chamber with the Use of Grain Motion Modeling by Means of the Discrete Element Method. Case Study: Rape Seed

Author:

Gierz ŁukaszORCID,Kruszelnicka WeronikaORCID,Robakowska MariolaORCID,Przybył KrzysztofORCID,Koszela KrzysztofORCID,Marciniak Anna,Zwiachel Tomasz

Abstract

Nowadays, in the face of continuous technological progress and environmental requirements, all manufacturing processes and machines need to be optimized in order to achieve the highest possible efficiency. Agricultural machines such as seed drills and cultivation units are no exception. Their efficiency depends on the amount of sowing material to be used and the patency of seed transport tubes or colters. Most available control systems for seed drills are optical ones whose operation is not effective when working close to the ground due to large dusting. Thus, there is still a need to provide seed drills with sensors to be equipped with control systems suitable for use under conditions of massive dusting that would shorten the time of reaction to clogging and be affordable for every farmer. This study presents an analysis of grain motion in the sowing system and an analysis of the operation efficiency of an original piezoelectric sensor with patent application. The novelty of this work is reflected in the new design of a specially designed piezoelectric sensor in the sowing unit, for which an analysis of indication errors was carried out. A seed arrangement of this type has not been described so far. An analysis of the influence of the seed tube tilt angle and the type of its exit hole end on the coordinates of the grain point of collision with the sensor surface and erroneous indications of the amount of sown grains identified by the piezoelectric sensor is presented. Low values of the sensor indication errors (up to 10%), particularly for small tilt angles (0° and 5°) confirm its high grain detection efficiency, comparable with other sensors used in sowing systems, e.g., photoelectric, fiber or infrared sensors and confirm its suitability for commercial application. The results presented in this work broaden the knowledge on the use of sensors in seeding systems and provide the basis for the development of precise systems with piezoelectric sensors.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Evaluating the performance of rotary and tine inter-row cultivators at different working speeds;Gursoy;J. Agric. Sci. Technol.,2021

2. A Multifunctional Machine for Weeds Management of Permanent Raised Bed System in Oasis Northwestern China

3. Investigations of the Dynamics of a Four-Element Machine-and-Tractor Aggregate

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3