Combining Computational Fluid Dynamics and Gradient Boosting Regressor for Predicting Force Distribution on Horizontal Axis Wind Turbine

Author:

Bagalkot Nikhil,Keprate Arvind,Orderløkken Rune

Abstract

The blades of the horizontal axis wind turbine (HAWT) are generally subjected to significant forces resulting from the flow field around the blade. These forces are the main contributor of the flow-induced vibrations that pose structural integrity challenges to the blade. The study focuses on the application of the gradient boosting regressor (GBR) for predicting the wind turbine response to a combination of wind speed, angle of attack, and turbulence intensity when the air flows over the rotor blade. In the first step, computational fluid dynamics (CFD) simulations were carried out on a horizontal axis wind turbine to estimate the force distribution on the blade at various wind speeds and the blade’s attack angle. After that, data obtained for two different angles of attack (4° and 8°) from CFD acts as an input dataset for the GBR algorithm, which is trained and tested to obtain the force distribution. An estimated variance score of 0.933 and 0.917 is achieved for 4° and 8°, respectively, thus showing a good agreement with the force distribution obtained from CFD. High prediction accuracy and less time consumption make GBR a suitable alternative for CFD to predict force at various wind velocities for which CFD analysis has not been performed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3