Abstract
The conventional way of studying corrosion in marine environments is by installing corrosion coupons. Instead, this paper presents an experimental field study using an unattended corrosion sensor developed on the basis of ultrasound (US) technology to assess the thickness loss caused by general atmospheric corrosion on land close to the sea (coastal region). The system described here uses FPGA, low-power microcontroller, analog front-end devices in the sensor node, and a Beaglebone black wireless board for posting data to a server. The overall system is small, operates at low power, and was deployed at Gran Canaria to detect the thickness loss of an S355 steel sample and consequently estimate the corrosion rate. This experiment aims to demonstrate the system’s viability in marine environments and its potential to monitor corrosion in offshore wind turbines. In a day, the system takes four sets of measurements in 6 hour intervals, and each set consists of 5 consecutive measurements. Over the course of 5 months, the proposed experiment allowed for us to continuously monitor the corrosion rate in an equivalent corrosion process to an average thickness loss rate of 0.134 mm/year.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference45 articles.
1. Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects by International Renewable Energy Association
2. The European Offshore Wind Industry: Key Trends and Statistics 2017, Wind Europe
3. Offshore wind turbine design
4. Non-destructive testing of wind turbines using ultrasonic waves
5. Structural health monitoring for a wind turbine system: a review of damage detection methods
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献