Microstructure and Texture Evolution in Low Carbon and Low Alloy Steel during Warm Deformation

Author:

Xu Sheng,Xu Haijie,Shu XuedaoORCID,Li Shuxin,Shen Zhongliang

Abstract

Warm compression tests were carried out on low carbon and low alloy steel at temperatures of 600–850 °C and stain rates of 0.01–10 s−1. The evolution of microstructure and texture was studied using a scanning electron microscope and electron backscattered diffraction. The results indicated that cementite spheroidization occurred and greatly reduced at 750 °C due to a phase transformation. Dynamic recrystallization led to a transition from {112}<110> texture to {111}<112> texture. Below 800 °C, the intensity and variation of texture with deformation temperature is more significant than that above 800 °C. The contents of the {111}<110> texture and {111}<112> texture were equivalent above 800 °C, resulting in the better uniformity of γ-fiber texture. Nucleation of <110>//ND-oriented grains increased, leading to the strengthening of <110>//ND texture. Microstructure analysis revealed that the uniform and refined grains can be obtained after deformation at 800 °C and 850 °C. The texture variation reflected the fact that 800 °C was the critical value for temperature sensitivity of warm deformation. At a large strain rate, the lowest dislocation density appeared after deformation at 800 °C. Therefore, 800 °C is a suitable temperature for the warm forming application, where the investigated material is easy to deform and evolves into a uniform and refined microstructure.

Funder

National Natural Science Foundation of China

Public Welfare Technology Application Research Project of Zhejiang Province of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3