Development of Topical Formulations Containing 20% of Coated and Uncoated Zinc Oxide Nanoparticles: Stability Assessment and Penetration Evaluation by Reflectance Confocal Laser Microscopy

Author:

Assis Dias Alves Geórgia de1,Cuelho Camila Helena Ferreira1,Fonseca Maria José Vieira1,Maia Campos Patrícia Maria Berardo Gonçalves1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, São Paulo, Brazil

Abstract

The introduction of zinc oxide nanoparticles (ZnOn) in sunscreens solved the issue of poor spreadability of these formulations, which often left a white film on the skin. However, safety concerns have arisen regarding the topical application of ZnOn. Some studies employed commercial sunscreens to address the safety issues of the topical application of ZnOn; however, commercial formulations are often complex and contain a wide range of ingredients that could attenuate the potential damage caused by the ZnOn. Therefore, in this study we aimed to develop a simple stable formulation containing 20% of coated and uncoated ZnOn, characterize the formulations and the nanoparticles, and assess the skin penetration in a Franz diffusion cell. The Feret’s diameter for the uncoated and coated ZnOn was 137 nm and 134 nm, respectively. For the uncoated ZnOn the hydrodynamic size in water was 368 nm and for the coated ZnOn, the average hydrodynamic size in ethyl acetate was 135 nm. The incorporation of ZnOn led to formulations more consistent and easier to spread, as suggested by the lower work of shear and higher values of firmness, cohesiveness, consistency and index of viscosity compared with the vehicle. The stability assessment at 45 °C suggested that the formulations containing the ZnOn were stable for 30 days and the vehicle was stable for 90 days. The assessment of the skin penetration by reflectance confocal laser microscopy indicated that the ZnOn did not permeate into the deepest layers of the skin, but accumulated on the skin furrows, hair and hair follicles.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3