Antioxidant Profile of Origanum dictamnus L. Exhibits Antiaging Properties against UVA Irradiation

Author:

Letsiou Sophia12ORCID,Trapali Maria1,Vougiouklaki Despina2ORCID,Tsakni Aliki2ORCID,Antonopoulos Dionysis2,Houhoula Dimitra2

Affiliation:

1. Department of Biomedical Science, University of West Attica, Agiou Spyridonos 28, 12243 Egaleo, Greece

2. Department of Food Science and Technology, Faculty of Food Sciences, University of West Attica, 12243 Egaleo, Greece

Abstract

Skin aging mainly occurs due to intrinsic and extrinsic factors. Extrinsic aging is a consequence of exposure to ultraviolet radiation. Meanwhile, natural products exhibit protective properties against skin aging as well as photoaging. In this context, the research on natural anti-aging agents is greatly advanced, and in recent years, numerous plant-based products have been investigated. The aim of this study was to assess the antioxidant profile of Origanum dictamnus L. extract as well as its antiaging effects on 2D cultures of fibroblasts and keratinocytes under UVA irradiation to unravel the potential role of Origanum dictamnus L. in cosmetology. In an attempt to explore the antioxidant profile of the extract, we employed well-established enzymatic assays (DPPH, FRAP, ABTS, and TPC) and a phytochemical screening by LC/MS. According to our findings, the Origanum dictamnus L. extract possesses high scavenging activity (DPPH, ABTS), high phenolic content (TPC), and high Fe(III)-reduction activity (FRAP). Moreover, the LC/MS analysis revealed that the extract was rich in flavonoids, holding a high content of curcumin, kampferol, silymarin, cyanidin-3-glucoside, deosmin, rutin, and quercetin. To gain insight into the bioactivity of Origanum dictamnus L. extract in cell aging, the expression of various genes that are implicated in the skin aging process in keratinocytes and fibroblasts was studied. The gene expression analysis revealed that the extract increases cell proliferation in the cells exposed to UVA irradiation and concomitantly modulates the expression of genes related to the aging process in keratinocytes (KLK7, OCLN, GBA1) and fibroblasts (SIRT2, FOXO3, COL3A1) under the same conditions.

Publisher

MDPI AG

Subject

Dermatology,Pharmaceutical Science,Aging,Chemical Engineering (miscellaneous),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3