Accurate Prediction of Tea Catechin Content with Near-Infrared Spectroscopy by Deep Learning Based on Channel and Spatial Attention Mechanisms

Author:

Zhang Mingzan1,Zhang Tuo2,Wang Yuan1,Duan Xueyi2,Pu Lulu2,Zhang Yuan2,Li Qin2,Liu Yabing2

Affiliation:

1. Department of Chemistry and Environmental Engineering, Guizhou Industry Polytechnic College, Guiyang 550025, China

2. Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China

Abstract

The assessment of catechin content stands as a pivotal determinant of tea quality. In tea production and quality grading, the development of accurate and non-destructive techniques for the accurate prediction of various catechin content is paramount. Near-infrared spectroscopy (NIRS) has emerged as a widely employed tool for analyzing the chemical composition of tea. Nevertheless, the spectral information obtained from NIRS faces challenges when discerning different types of catechins in black tea, owing to their similar physical and chemical properties. Moreover, the vast number of NIRS wavelengths exceeds the available tea samples, further complicating the accurate assessment of catechin content. This study introduces a novel deep learning approach that integrates specific wavelength selection and attention mechanisms to accurately predict the content of various catechins in black tea simultaneously. First, a wavelength selection algorithm is proposed based on feature interval combination sensitivity segmentation, which effectively extracts the NIRS feature information of tea. Subsequently, a one-dimensional convolutional neural network (CNN) incorporating channel and spatial–sequential attention mechanisms is devised to independently extract the key features from the selected wavelength variables. Finally, a multi-output predictor is employed to accurately predict the four main catechins in tea. The experimental results demonstrate the superiority of the proposed model over existing methods in terms of prediction accuracy and stability (R2 = 0.92, RMSE = 0.018 for epicatechin; R2 = 0.96, RMSE = 0.11 for epicatechin gallate; R2 = 0.97, RMSE = 0.14 for epigallocatechin; R2 = 0.97, RMSE = 0.32 for epigallocatechin gallate). This innovative deep learning approach amalgamates wavelength selection with attention mechanisms, provides a new perspective for the simultaneous assessment of the major components in tea, and contributes to the advancement of precision management in the tea industry’s production and grading processes.

Funder

Guizhou Provincial Science and Technology Plan Project

Guizhou Vocational and Technical College of Industry 2023 School-Level Research Project

Guizhou Provincial Department of Science and Technology Plan Support Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3