Simulating the Detection of Dioxin-like Pollutants with 2D Surface-Enhanced Raman Spectroscopy Using h-BNC Substrates

Author:

Alvarado Raúl1,Otero Nicolás1ORCID,Mandado Marcos1ORCID,Ramos-Berdullas Nicolás1ORCID

Affiliation:

1. Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain

Abstract

The ability of 2D hybrid structures formed by boron, nitrogen and carbon atoms (h-BNCs) to act as potential substrates for the surface-enhanced Raman spectroscopy (SERS) detection of dioxin-like pollutants is theoretically analyzed. The strong confinement and high tunability of the electromagnetic response of the carbon nanostructures embedded within the h-BNC sheets point out that these hybrid structures could be promising for applications in optical spectroscopies, such as SERS. In this work, two model dioxin-like pollutants, TCDD and TCDF, and a model h-BNC surface composed of a carbon nanodisk of ninety-six atoms surrounded by a string of borazine rings, BNC96, are used to simulate the adsorption complexes and the static and pre-resonance Raman spectra of the adsorbed molecules. A high affinity of BNC96 for these pollutants is reflected by the large interaction energies obtained for the most stable stacking complexes, with dispersion being the most important contribution to their stability. The strong vibrational coupling of some active modes of TCDF and, specially, of TCDD causes the static Raman spectra to show a ”pure” chemical enhancement of one order of magnitude. On the other hand, due to the strong electromagnetic response of BNC96, confined within the carbon nanodisk, the pre-resonance Raman spectra obtained for TCDD and TCDF display large enhancement factors of 108 and 107, respectively. Promisingly, laser excitation wavelengths commonly used in SERS experiments also induce significant Raman enhancements of around 104 for the TCDD and TCDF signals. Both the strong confinement of the electromagnetic response within the carbon domains and the high modulation of the resonance wavelengths in the visible and/or UV region in h-BNCs should lead to a higher sensitivity than that of graphene and white graphene parent structures, thus overcoming one of the main disadvantages of using 2D substrates for SERS applications.

Funder

Xunta de Galicia

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Reference103 articles.

1. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife;Birnbaum;Environ. Health Perspect.,1998

2. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds;Birnbaum;Toxicol. Sci.,2006

3. World Health Organization (1989). Polychlorinated dibenzo-para-dioxins and dibenzofurans. Environ. Health Criteria., 88, 1.

4. (1997). Polychlorinated Dibenzo-para-dioxins and Polychlorinated Dibenzofurans. IARC Monogr. Eval. Carcinog. Risks Hum. Suppl., 69, 1.

5. Schecter, A. (1994). Dioxin and Health, Springer.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3