Electrical and Humidity-Sensing Properties of Impedance-Type Humidity Sensors that Were Made of Ag Microwires/PPy/SnO2 Ternary Composites

Author:

Su Pi-GueyORCID,Lu Ping-Hsiang

Abstract

Impedance-type humidity sensors were fabricated via one-step UV-irradiation photopolymerization of Ag microwires (Ag MWs), polypyrrole (PPy) and SnO2 ternary composite (Ag MWs/PPy/SnO2) films on an alumina substrate. X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled with an energy dispersive X-ray (EDX) elemental mapping were used to analyze the morphology, structure, and composition of Ag MWs/PPy/SnO2 ternary composite films. Microstructural observations revealed that the Ag MWs were embedded, and PPy formed on the surface of the Ag MWs/PPy/SnO2 ternary composite film. The effects of the addition amounts of loading of Ag and PPy on the electrical and humidity-sensing properties of the Ag MWs/PPy/SnO2 ternary composite films were investigated. The impedance-type humidity sensor based on Ag MWs/PPy/SnO2 ternary composite film containing 6 mg of Ag and 0.1 g of PPy had the highest sensitivity and an acceptable linearity over the RH ranged from 10% to 90% RH, a low hysteresis, a fast response time, and long-term stability. This technique is useful for practical application because its fast and ease of fabrication. The ions (H3O+) that dominate the impedance changed with relative humidity (RH) for the humidity sensor that based on Ag MWs/PPy/SnO2 ternary composite film was analyzed using complex impedance spectra.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3