Design of a Decision Support System to Operate a NO2 Gas Sensor Using Machine Learning, Sensitive Analysis and Conceptual Control Process Modelling

Author:

Gheibi Mohammad1ORCID,Taghavian Hadi2ORCID,Moezzi Reza2ORCID,Waclawek Stanislaw2ORCID,Cyrus Jindrich2ORCID,Dawiec-Lisniewska Anna3,Koci Jan2,Khaleghiabbasabadi Masoud2

Affiliation:

1. Association of Talent under Liberty in Technology (TULTECH), 10615 Tallinn, Estonia

2. Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117 Liberec, Czech Republic

3. Department of Advanced Materials Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-373 Wroclaw, Poland

Abstract

The most advantageous method for detecting dangerous gases and reducing the risk of potential environmental toxicity effects is the use of innovative gas sensing systems. However, designing effective sensors requires a complex process of synthesizing functional nanoparticles, which is a costly process. Additionally, practical operation of the toxic gas sensors always carries a significant cost along with a considerable risk of hazardous gas emissions. Machine learning algorithms may be used to accurately automate the behavior of the sensors to eliminate the abovementioned deficiencies. In the present research, there are three different factors involved in the optimization of NO2 sensing by means of the response surface methodology (RSM). Two main functions of sensor efficiency, namely sensitivity and response time, are predicted according to the Fe3O4 additive (%), input NO2 (ppm), and response time/sensitivity, and moreover, the execution of a controlling system of the sensor network using the Jacobson model is proposed. The machine learning computations are implemented by Meta.RegressionByDiscretization, M5.Rules, Lazy KStar, and Gaussian Processes algorithms. The outcomes illustrate that the best gas sensor efficiency predictions are related to M5.Rules and Lazy KStar, with a correlation coefficient of more than 96%. The best performance of machine learning computations can be found in the range of 8–10-fold in training and testing arrangements. Meanwhile, the ANOVA assessment confirmed that the most important features in the prediction of response time and sensitivity are NO2 concentration and response time, respectively, with the lowest p-value recorded. The outcomes illustrated that with combinations of RSM, machine learning, and the Jacobson model as a controller, a decision support system can be presented for the NO2 gas sensor system.

Funder

Technical University in Liberec

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3