Evaluation by a GC Electronic Nose of the Differences in Volatile Profile Induced by Stopping Fermentation with Octanoic and Decanoic Acid to Produce Sweet Wines

Author:

Baniţă Cornel1,Antoce Oana Arina1ORCID,Cojocaru George Adrian1ORCID

Affiliation:

1. Department of Bioengineering of Horti-Viticultural Systems, Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti Ave., Sector 1, 011464 Bucharest, Romania

Abstract

Due to their inhibitory effect on the growth and fermentation of yeasts, medium-chain fatty acids can be used for the production of naturally sweet wines. Addition of octanoic acid, decanoic acid or their combinations is able to stop the alcoholic fermentation, reducing at the same time the doses of sulphur dioxide addition needed for the same goal in the classical technologies. Doses in the range of 10–30 mg L−1 of these acids were used, and their effect on the aroma profile of the sweet wines obtained was evaluated by using a chromatographic electronic nose with two columns. Based on the chromatographic peaks, which are considered the sensors of this e-nose, differentiation of the wines treated with octanoic or decanoic acids is easily achieved. The acid doses, the type of acid and also the yeast used for fermentations have all detectable influences on the volatile profiles of the wines. Discriminant factor analysis was applied on the e-nose data to separate the wines obtained with different treatments. Several differences in the content of the volatile compounds were identified and discussed in view of their sensory influences and the impact of treatment and yeast, respectively. Special attention was given to the formation of ethyl octanoate and ethyl decanoate which, at acid additions over 10 mg L−1, are formed in quantities which have a detectable influence on the aromatic profile. Ethyl octanoate and decanoate are produced in direct relation to the dose of the corresponding acids, but the yeast named ST leads to higher amounts of ethyl decanoate while the one named ERSA leads to higher amounts of ethyl octanoate. In accordance with the e-nose results, the aromatic profile obtained by stopping the fermentation with decanoic acid and using the ERSA yeast is more complex, the wines thus produced preserving more of the varietal and fermentation aroma. This research will be continued at an industrial scale.

Funder

University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3