Microfluidic Platforms for Single Cell Analysis: Applications in Cellular Manipulation and Optical Biosensing

Author:

Kumari Shrishti1ORCID,Saha Udiptya2,Bose Mayilvahanan3,Murugan Divagar4,Pachauri Vivek4ORCID,Sai V. V. Raghavendra2ORCID,Madaboosi Narayanan1

Affiliation:

1. Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India

2. Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India

3. Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600020, India

4. Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, D-52074 Aachen, Germany

Abstract

Cellular heterogeneity of any tissue or organ makes it challenging to identify and study the impact and the treatment of any disease. In this context, analysis of cells at an individual level becomes highly relevant for throwing light on the heterogeneous nature of cells. Single cell analysis can be used to gain insights into an overall view of any disease, thereby holding great applications in health diagnosis, disease identification, drug screening, and targeted delivery. Various conventional methods, such as flow cytometry, are used to isolate and study single cells. Still, these methods are narrower in scope due to certain limitations, including the associated processing/run times, the economy of reagents, and sample preparation. Microfluidics, an emerging technology, overcomes such limitations and is now being widely applied to develop tools for the isolation, analysis, and parallel manipulation of single cells. This review systematically compiles various microfluidic tools and techniques involved in single cell investigation. The review begins by highlighting the applications of microfluidics in single cell sorting and manipulation, followed by emphasizing microfluidic platforms for single cell analysis, with a specific focus on optical sensing-based detection in a high-throughput fashion, and ends with applications in cancer cell studies.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3