Design and Evaluation of a Competitive Phosphorescent Immunosensor for Aflatoxin M1 Quantification in Milk Samples Using Mn:ZnS Quantum Dots as Antibody Tags

Author:

Forcada SergioORCID,Sánchez-Visedo AdriánORCID,Melendreras CandelaORCID,Menéndez-Miranda Mario,Costa-Fernández José M.ORCID,Royo Luis J.ORCID,Soldado AnaORCID

Abstract

Aflatoxin M1 (AFM1) is one of the most widespread aflatoxins that can be present in the milk of lactating mammals. It can cause carcinogenicity, mutagenesis, teratogenesis, genotoxicity and immunosuppression. The WHO recommends reducing the AFM1 concentration in food products, so the European Commission has set a maximum allowable limit of 0.05 µg L−1 in milk and its products. Thus, there is a need to develop new methodologies to satisfy the demand for reliable, cost-effective, robust and sensitive AFM1 routine controls. In the present work, a competitive phosphorescent immunosensor for AFM1 quantification in milk, based on antibody–antigen recognition and Mn:ZnS quantum dots (d-QDs) as photoluminescent labels, has been developed. Two different assay strategies based on the use of d-QDs as labels of secondary antibodies (direct assay), or of a derivative species of the antigen AFM1-Bovine Serum Albumin (indirect assay) were compared in terms of analytical performance for AFM1 quantification. The best analytical results were obtained with the immunoassay format that uses d-QDs as tags of secondary antibodies (direct assay), and said design was finally selected. The selected immunosensor provided a detection limit for AFM1 quantification of only 0.002 µg L−1, which greatly satisfied the maximum tolerable limit of AFM1 in milk of 0.05 µg L−1. The accuracy, calculated as recovery of AFM1 in fortified skimmed milk samples, ranged from 81 to 90%, with relative standard deviations from 3% to 14%. These results bring to light the good performance of such phosphorescent biosensors as simple and fast alternatives to conventional chromatographic analytical methods.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3