Catalyzed Hairpin Assembly-Assisted DNA Dendrimer Enhanced Fluorescence Anisotropy for MicroRNA Detection

Author:

Xie Tianjin,Liu Yuxin,Xie Jiali,Luo Yujie,Mao Kai,Huang Chengzhi,Li Yuanfang,Zhen ShujunORCID

Abstract

Biomacromolecules have been employed successfully as fluorescence anisotropy (FA) amplifiers for biosensing in reported studies. However, the sensitivities of the traditional biomacromolecule amplified FA strategies need to be improved because of the relatively low molecular weight or volume of a single biomacromolecule and the 1:1 binding ratio between the fluorophore-linked probe and target. In this work, a DNA dendrimer with a high molecular weight and volume was employed as a new FA amplifier, which was coupled with target-catalyzed hairpin assembly (CHA) for the sensitive detection of miRNA-21. The fluorophore-modified probe DNA (pDNA) was fixed on the DNA dendrimer, resulting in a high FA value. The addition of miRNA-21 triggered the CHA process and produced plenty of H1-H2 hybrids. The complex of H1-H2 bound to the DNA dendrimer and released the pDNA through a toehold-mediated strand exchange reaction. Thus, a low FA value was obtained because of the low mass and volume of free pDNA. Based on the dramatically reduced FA, miRNA-21 was detected in the range of 1.0–19.0 nM and the limit of detection was 52.0 pM. In addition, our method has been successfully utilized for miRNA-21 detection in human serum. This strategy is sensitive and selective and is expected to be used to detect other biomolecules simply by changing the corresponding nucleic acid probe.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3