Enzyme-Free Signal Amplification Strategy via Chaperone Copolymer-Accelerated Hybridization for Highly Sensitive Detection of Adenosine

Author:

Liao Yazhen1,Yang Yuxing1,Qing Yang1,Du Jie1ORCID

Affiliation:

1. State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou 570228, China

Abstract

Adenosine is a vital biological small molecule that regulates various physiological processes in the human body. A high expression of adenosine in cells can facilitate tumor growth. Therefore, detecting adenosine is crucial for early disease diagnosis. In this paper, we designed a fluorescent biosensor for the sensitive detection of adenosine based on the cationic comb-type copolymer PLL-g-Dex for assisted rapid hybridization of nucleic acids at room temperature. In this strategy, adenosine preferentially binds to the aptamer immobilized on the surface of magnetic nanobeads, releasing free aDNA in solution as the primer strand, which rapidly forms DNA nanowires with auxiliary probes of bDNA with the assistance of PLL-g-Dex. SYBR Green I is embedded in DNA duplexes to generate strong fluorescence. The experimental results showed that PLL-g-Dex promotes DNA hybridization reactions at room temperature to form ultra-long DNA nanowires, thus achieving signal amplification and shortening the detection time. In addition, magnetic nanobeads can reduce the background signal during the reaction. Compared with several previous studies on the fluorescence detection of adenosine, this strategy has a lower detection limit of 2.32 nM. Furthermore, this novel system exhibited a good detection performance even under complex environments, such as serum, providing some reference for the quantitative detection of adenosine in early disease diagnosis.

Funder

Hainan Province Science and Technology Special Fund

National Natural Science Foundation of China

Graduate Students Innovation Research Project of Hainan Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3