Cucurbit[8]uril-Based Potentiometric Sensor Coupled to HPLC for Determination of Tetracycline Residues in Milk Samples

Author:

Gil Renato L.1ORCID,Amorim Célia M. P. G.1ORCID,Montenegro Maria da Conceição B. S. M.1ORCID,Araújo Alberto N.1

Affiliation:

1. LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal

Abstract

The determination of chlortetracycline, doxycycline, oxytetracycline, and tetracycline in milk samples by HPLC coupled to a cucurbit[8]uril-based potentiometric sensor is herein presented. The new tetracycline-selective electrode is based on a polymeric membrane incorporating cucurbit[8]uril as a macrocyclic host, potassium tetrakis(p-chlorophenyl) borate as an ionic additive, 2-fluorophenyl 2-nitrophenyl ether as a plasticizer, and multi-walled carbon nanotubes as nanostructured materials. A microfluidic wall-jet flow-cell is implemented as a potentiometric detector after chromatographic separation by a C8 column using a gradient mobile phase of sulphuric acid and acetonitrile. The proposed methodology was validated following International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) and European Union (EU) guidelines. Linear regression models provided R2 in the range from 0.9973 ± 0.0026 to 0.9987 ± 0.0012 for all tetracycline antibiotics. The limits of detection and quantification ranged from 13.3 to 46.0 μg L−1 and 44.4 to 92.1 μg L−1, respectively. Precision intra-day, inter-day, and inter-electrode showed relative standard deviation values lower than 12.5%, 13.5%, and 12.9%, respectively. Accuracy was assessed by analysis of spiked milk samples around the maximum residue limit, yielding recovery values in the range from 81.3 to 108.5%. The simple, sensitive, cost-effective, and reliable HPLC-ion-selective electrode method justifies its use as a competitive alternative for the analysis of tetracycline residues in the food quality control sector.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3