Metal Oxide Semiconductor Gas Sensors for Lung Cancer Diagnosis

Author:

Li Guangyao1,Zhu Xitong1,Liu Junlong1,Li Shuyang1,Liu Xiaolong1

Affiliation:

1. School of Materials, Sun Yat-sen University, Shenzhen 518107, China

Abstract

Lung cancer is the most prevalent severe illness in both sexes and all ages and the leading cause of cancer-related deaths globally. Late-stage diagnosis is the primary cause of its high mortality rate. Therefore, the management of lung cancer needs early-stage screening. Breath analysis is a non-invasive, low-cost, and user-friendly approach to diagnosing lung cancer. Among the various types of breath sensors, MOS gas sensors are preferred due to their high gas responses, fast response times, robustness, and lower price. This review focuses on the critical role of MOS gas sensors in detecting VOCs in lung cancer patients’ exhaled breath. It introduces the basic working mechanism of MOS gas-sensitive materials, summarizes some high-performance MOS materials suitable for detecting potential lung cancer biomarkers and provides performance enhancement strategies. The review also briefly introduces the sensor array and its pattern recognition algorithm. Finally, we discuss the challenges in developing MOS gas sensors for lung cancer screening and present the prospect of using the e-nose for large-scale early lung cancer screening.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3