Complex Rayleigh–van-der-Pol–Duffing Oscillators: Dynamics, Phase, Antiphase Synchronization, and Image Encryption

Author:

Al Themairi Asma1ORCID,Mahmoud Gamal M.2,Farghaly Ahmed A.23,Abed-Elhameed Tarek M.2ORCID

Affiliation:

1. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt

3. Department of Information Technology, College of Computer and Information Sciences, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia

Abstract

This paper introduces the complex Rayleigh–van-der- Pol–Duffing oscillators (RVDOs), which are hyperchaotic and can be autonomous or nonautonomous. The fundamental dynamics of the autonomous and nonautonomous complex RVDOs, including dissipation, symmetry, fixed points, and stability, are studied. These oscillators are found in various necessary fields of physics and engineering. The paper proposes a scheme to achieve phase synchronization (PS) and antiphase synchronization (APS) for different dimensional models. These kinds of synchronization are considered a generalization of several other types of synchronization. We use the active control method based on Lyapunov’s stability theory for this scheme. By analytically determining the control functions, the scheme achieved PS and APS. Our scheme is applied to study the PS of hyperchaotic behaviors for two distinct hyperchaotic nonautonomous and autonomous complex RVDOs. Additionally, the scheme is employed to achieve the APS of a chaotic real nonautonomous RVDO and a hyperchaotic complex autonomous RVDO, including those with different dimensions. Our work presents numerical results that plot the amplitudes and phases of these hyperchaotic behaviors, demonstrating the achievement of the PS and APS. The encryption and decryption of grayscale images are researched based on APS. The experimental results of image encryption and decryption are computed with information entropy, visual analysis, and histograms.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3