Advances in Ostrowski-Mercer Like Inequalities within Fractal Space

Author:

Vivas-Cortez Miguel1ORCID,Awan Muhammad Uzair2ORCID,Asif Usama2,Javed Muhammad Zakria2ORCID,Budak Hüseyin3ORCID

Affiliation:

1. Escuela de Ciencias Fsicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, Quito 17-01-2184, Ecuador

2. Department of Mathematics, Government College University, Faisalabad 38000, Pakistan

3. Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce 81620, Turkey

Abstract

The main idea of the current investigation is to explore some new aspects of Ostrowski’s type integral inequalities implementing the generalized Jensen–Mercer inequality established for generalized s-convexity in fractal space. To proceed further with this task, we construct a new generalized integral equality for first-order local differentiable functions, which will serve as an auxiliary result to restore some new bounds for Ostrowski inequality. We establish our desired results by employing the equality, some renowned generalized integral inequalities like Hölder’s, power mean, Yang-Hölder’s, bounded characteristics of the functions and considering generalized s-convexity characteristics of functions. Also, in support of our main findings, we deliver specific applications to means, and numerical integration and graphical visualization are also presented here.

Funder

Pontificia Universidad Católica del Ecuador

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference31 articles.

1. Yang, X.J. (2012). Advanced Local Fractional Calculus and Its Applications, World Science.

2. Kolwankar, K.M., and Gangal, A.D. (1999). Springer.

3. Approximation solutions for local fractional Schrodinger equation in the one-dimensional cantorian system;Zhao;Adv. Math.,2013

4. Mandelbrot, B.B. (1983). The Fractal Geometry of Nature, Macmillan.

5. Generalized-convex functions on fractal sets;Mo;Abstr. Appl. Anal.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3