Design Optimization of Improved Fractional-Order Cascaded Frequency Controllers for Electric Vehicles and Electrical Power Grids Utilizing Renewable Energy Sources

Author:

El-Sousy Fayez F. M.1ORCID,Alqahtani Mohammed H.1ORCID,Aljumah Ali S.1,Aly Mokhtar2ORCID,Almutairi Sulaiman Z.1,Mohamed Emad A.13ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al Kharj 16278, Saudi Arabia

2. Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420000, Chile

3. Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt

Abstract

Recent developments in electrical power grids have witnessed high utilization levels of renewable energy sources (RESs) and increased trends that benefit the batteries of electric vehicles (EVs). However, modern electrical power grids cause increased concerns due to their continuously reduced inertia resulting from RES characteristics. Therefore, this paper proposes an improved fractional-order frequency controller with a design optimization methodology. The proposed controller is represented by two cascaded control loops using the one-plus-proportional derivative (1 + PD) in the outer loop and a fractional-order proportional integral derivative (FOPID) in the inner loop, which form the proposed improved 1 + PD/FOPID. The main superior performance characteristics of the proposed 1 + PD/FOPID fractional-order frequency controller over existing methods include a faster response time with minimized overshoot/undershoot peaks, an ability for mitigating both high- and low-frequency disturbances, and coordination of EV participation in regulating electrical power grid frequency. Moreover, simultaneous determination of the proposed fractional-order frequency controller parameters is proposed using the recent manta ray foraging optimization (MRFO) algorithm. Performance comparisons of the proposed 1 + PD/FOPID fractional-order frequency controller with existing PID, FOPID, and PD/FOPID controllers are presented in the paper. The results show an improved response, and the disturbance mitigation is also obtained using the proposed MRFO-based 1 + PD/FOPID control and design optimization methodology.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Agencia Nacional de Investigación y Desarrollo de Chile

Chile FONDECYT Iniciación

SERC-Chile

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3