FLRNN-FGA: Fractional-Order Lipschitz Recurrent Neural Network with Frequency-Domain Gated Attention Mechanism for Time Series Forecasting

Author:

Zhao Chunna1ORCID,Ye Junjie1ORCID,Zhu Zelong1,Huang Yaqun1

Affiliation:

1. School of Information Science and Engineering, Yunnan University, Kunming 650500, China

Abstract

Time series forecasting has played an important role in different industries, including economics, energy, weather, and healthcare. RNN-based methods have shown promising potential due to their strong ability to model the interaction of time and variables. However, they are prone to gradient issues like gradient explosion and vanishing gradients. And the prediction accuracy is not high. To address the above issues, this paper proposes a Fractional-order Lipschitz Recurrent Neural Network with a Frequency-domain Gated Attention mechanism (FLRNN-FGA). There are three major components: the Fractional-order Lipschitz Recurrent Neural Network (FLRNN), frequency module, and gated attention mechanism. In the FLRNN, fractional-order integration is employed to describe the dynamic systems accurately. It can capture long-term dependencies and improve prediction accuracy. Lipschitz weight matrices are applied to alleviate the gradient issues. In the frequency module, temporal data are transformed into the frequency domain by Fourier transform. Frequency domain processing can reduce the computational complexity of the model. In the gated attention mechanism, the gated structure can regulate attention information transmission to reduce the number of model parameters. Extensive experimental results on five real-world benchmark datasets demonstrate the effectiveness of FLRNN-FGA compared with the state-of-the-art methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3