A Riemannian Dichotomizer Approach on Symmetric Positive Definite Manifolds for Offline, Writer-Independent Signature Verification

Author:

Vasilakis Nikolaos1ORCID,Chorianopoulos Christos1ORCID,Zois Elias N.1ORCID

Affiliation:

1. Telecommunications, Signal Processing and Intelligent Systems Laboratory (Telsip), Ancient Olive Grove Campus, University of West Attica, 12241 Aigaleo, Greece

Abstract

Automated handwritten signature verification continues to pose significant challenges. A common approach for developing writer-independent signature verifiers involves the use of a dichotomizer, a function that generates a dissimilarity vector with the differences between similar and dissimilar pairs of signature descriptors as components. The Dichotomy Transform was applied within a Euclidean or vector space context, where vectored representations of handwritten signatures were embedded in and conformed to Euclidean geometry. Recent advances in computer vision indicate that image representations to the Riemannian Symmetric Positive Definite (SPD) manifolds outperform vector space representations. In offline signature verification, both writer-dependent and writer-independent systems have recently begun leveraging Riemannian frameworks in the space of SPD matrices, demonstrating notable success. This work introduces, for the first time in the signature verification literature, a Riemannian dichotomizer employing Riemannian dissimilarity vectors (RDVs). The proposed framework explores a number of local and global (or common pole) topologies, as well as simple serial and parallel fusion strategies for RDVs for constructing robust models. Experiments were conducted on five popular signature datasets of Western and Asian origin, using blind intra- and cross-lingual experimental protocols. The results indicate the discriminative capabilities of the proposed Riemannian dichotomizer framework, which can be compared to other state-of-the-art and computationally demanding architectures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3