Affiliation:
1. Telecommunications, Signal Processing and Intelligent Systems Laboratory (Telsip), Ancient Olive Grove Campus, University of West Attica, 12241 Aigaleo, Greece
Abstract
Automated handwritten signature verification continues to pose significant challenges. A common approach for developing writer-independent signature verifiers involves the use of a dichotomizer, a function that generates a dissimilarity vector with the differences between similar and dissimilar pairs of signature descriptors as components. The Dichotomy Transform was applied within a Euclidean or vector space context, where vectored representations of handwritten signatures were embedded in and conformed to Euclidean geometry. Recent advances in computer vision indicate that image representations to the Riemannian Symmetric Positive Definite (SPD) manifolds outperform vector space representations. In offline signature verification, both writer-dependent and writer-independent systems have recently begun leveraging Riemannian frameworks in the space of SPD matrices, demonstrating notable success. This work introduces, for the first time in the signature verification literature, a Riemannian dichotomizer employing Riemannian dissimilarity vectors (RDVs). The proposed framework explores a number of local and global (or common pole) topologies, as well as simple serial and parallel fusion strategies for RDVs for constructing robust models. Experiments were conducted on five popular signature datasets of Western and Asian origin, using blind intra- and cross-lingual experimental protocols. The results indicate the discriminative capabilities of the proposed Riemannian dichotomizer framework, which can be compared to other state-of-the-art and computationally demanding architectures.