WSN-Assisted UAV Trajectory Adjustment for Pesticide Drift Control

Author:

Hu Jie,Wang Tuan,Yang Jiacheng,Lan Yubin,Lv Shilei,Zhang YaliORCID

Abstract

Unmanned Aerial Vehicles (UAVs) have been widely applied for pesticide spraying as they have high efficiency and operational flexibility. However, the pesticide droplet drift caused by wind may decrease the pesticide spraying efficiency and pollute the environment. A precision spraying system based on an airborne meteorological monitoring platform on manned agricultural aircrafts is not adaptable for. So far, there is no better solution for controlling droplet drift outside the target area caused by wind, especially by wind gusts. In this regard, a UAV trajectory adjustment system based on Wireless Sensor Network (WSN) for pesticide drift control was proposed in this research. By collecting data from ground WSN, the UAV utilizes the wind speed and wind direction as inputs to autonomously adjust its trajectory for keeping droplet deposition in the target spraying area. Two optimized algorithms, namely deep reinforcement learning and particle swarm optimization, were applied to generate the newly modified flight route. At the same time, a simplified pesticide droplet drift model that includes wind speed and wind direction as parameters was developed and adopted to simulate and compute the drift distance of pesticide droplets. Moreover, an LSTM-based wind speed prediction model and a RNN-based wind direction prediction model were established, so as to address the problem of missing the latest wind data caused by communication latency or a lack of connection with the ground nodes. Finally, experiments were carried out to test the communication latency between UAV and ground WSN, and to evaluate the proposed scheme with embedded Raspberry Pi boards in UAV for feasibility verification. Results show that the WSN-assisted UAV trajectory adjustment system is capable of providing a better performance of on-target droplet deposition for real time pesticide spraying with UAV.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3