Characterization of the Complete Mitochondrial Genome of Schizothorax kozlovi (Cypriniformes, Cyprinidae, Schizothorax) and Insights into the Phylogenetic Relationships of Schizothorax

Author:

Qin Qiang1,Chen Lin2,Zhang Fubin1,Xu Jianghaoyue1,Zeng Yu3

Affiliation:

1. College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China

2. Powerchina Chengdu Engineering Corporation Limited, Chengdu 611130, China

3. College of Life Science, China West Normal University, Nanchong 637009, China

Abstract

Schizothorax kozlovi is an endemic and vulnerable fish species found in the upper Yangtze River in China. Over the past few years, the population resources of S. kozlovi have been nearly completely depleted owing to multiple contributing threats. While the complete mitochondrial genomes serve as important molecular markers for phylogenetic and genetic studies, the mitochondrial genome of S. kozlovi has still received little attention. In this study, we analyzed the characterization of the mitochondrial genome of S. kozlovi and investigated the phylogenetic relationships of Schizothorax. The complete mitochondrial genome of S. kozlovi was 16,585 bp in length, which contained thirty-seven genes (thirteen protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), twenty-two transfer RNA genes (tRNAs)) and two non-coding regions for the origin of light strand (OL) and the control region (CR). There were nine overlapping regions and seventeen intergenic spacers regions in the mitochondrial genome. The genome also showed a bias towards A + T content (55.01%) and had a positive AT-skew (0.08) and a negative GC-skew (−0.20). All the PCGs employed the ATG or GTG as the start codon and TAA, TAG, or single T as the stop codon. Additionally, all of the tRNAs displayed a typical cloverleaf secondary structure, except trnS1 which lacked the D arm. The phylogenetic analysis, based on the maximum likelihood (ML) and Bayesian inference (BI) methods, revealed that the topologies of the phylogenetic tree divided the Schizothorax into four clades and did not support the classification of Schizothorax based on morphology. The phylogenetic status of S. kozlovi was closely related to that of S. chongi. The present study provides valuable genomic information for S. kozlovi and new insights in phylogenetic relationships of Schizothorax. These data could also offer fundamental references and guidelines for the management and conservation of S. kozlovi and other species of Schizothorax.

Funder

Natural Science Foundation of Sichuan

Doctoral Research Launch Special Project of China West Normal University

Publisher

MDPI AG

Reference69 articles.

1. Mitochondrion;Goodsell;Biochem. Mol. Biol. Educ.,2010

2. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes;Garesse;Gene,2001

3. Animal mitochondrial genomes;Boore;Nucleic Acids Res.,1999

4. Complete mitochondrial genome of the freshwater gudgeon, Pseudopungtungia nigra (Cypriniformes, Gobioninae);Hwang;Mitochondrial DNA,2014

5. The complete mitochondrial genome of Ricania speculum (Walker, 1851) (Hemiptera: Ricaniidae): Investigation of intraspecific variations on mitochondrial genome;Lee;Mitochondrial DNA Part B,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3