Epidemiological Insights into the Omicron Outbreak via MeltArray-Assisted Real-Time Tracking of SARS-CoV-2 Variants

Author:

Yan Ting1,Zheng Rongrong2,Li Yinghui3,Sun Siyang1,Zeng Xiaohong2,Yue Zhijiao3,Liao Yiqun1,Hu Qinghua3,Xu Ye1,Li Qingge1ORCID

Affiliation:

1. Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China

2. Xiamen Centre for Disease Control and Prevention, Xiamen 361021, China

3. Shenzhen Centre for Disease Control and Prevention, Shenzhen 518055, China

Abstract

The prolonged course of the COVID-19 pandemic necessitates sustained surveillance of emerging variants. This study aimed to develop a multiplex real-time polymerase chain reaction (rt-PCR) suitable for the real-time tracking of Omicron subvariants in clinical and wastewater samples. Plasmids containing variant-specific mutations were used to develop a MeltArray assay. After a comprehensive evaluation of both analytical and clinical performance, the established assay was used to detect Omicron variants in clinical and wastewater samples, and the results were compared with those of next-generation sequencing (NGS) and droplet digital PCR (ddPCR). The MeltArray assay identified 14 variant-specific mutations, enabling the detection of five Omicron sublineages (BA.2*, BA.5.2*, BA.2.75*, BQ.1*, and XBB.1*) and eight subvariants (BF.7, BN.1, BR.2, BQ.1.1, XBB.1.5, XBB.1.16, XBB.1.9, and BA.4.6). The limit of detection (LOD) of the assay was 50 copies/reaction, and no cross-reactivity was observed with 15 other respiratory viruses. Using NGS as the reference method, the clinical evaluation of 232 swab samples exhibited a clinical sensitivity of > 95.12% (95% CI 89.77–97.75%) and a specificity of > 95.21% (95% CI, 91.15–97.46%). When used to evaluate the Omicron outbreak from late 2022 to early 2023, the MeltArray assay performed on 1408 samples revealed that the epidemic was driven by BA.5.2* (883, 62.71%) and BF.7 (525, 37.29%). Additionally, the MeltArray assay demonstrated potential for estimating variant abundance in wastewater samples. The MeltArray assay is a rapid and scalable method for identifying SARS-CoV-2 variants. Integrating this approach with NGS and ddPCR will improve variant surveillance capabilities and ensure preparedness for future variants.

Funder

Fujian Province technology innovation key research and industrialization project

Fujian Province university

Xiamen major science and technology project

Xiamen industry, university and research project

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3