Thermal Cracking and Friction Performance of Two Kinds of Compacted Graphite Iron Brake Discs under Intensive Braking Conditions

Author:

Xu Zhuo1,Wang Guiquan1ORCID,Li Yanxiang2ORCID

Affiliation:

1. School of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China

2. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Abstract

The limited thermal conductivity of compacted graphite iron constrains its application in brake discs. The matrix plays a crucial role in balancing the thermal conductivity and mechanical performance of compacted graphite iron. Therefore, two kinds of compacted graphite brake discs with different ferrite proportions were utilized to investigate their thermal cracking and friction performance under intensive braking conditions based on inertia friction tests. The variations in peak temperature, pressure load and friction coefficient stability were also analyzed. The brake disc with a higher ferrite proportion exhibited a lower peak temperature, attributed to increased thermal conductivity. Moreover, the elevated content of soft ferrite resulted in a greater furrow height on the worn surface, contributing to an increase in friction force and stability. As a result, both the input pressure and mechanical stress decreased. It was observed that the compacted graphite iron brake disc with a higher ferrite proportion exhibited fewer thermal cracks without compromising wear resistance. Furthermore, the results suggest that lowering the disc temperature to 210 °C–250 °C can mitigate fatigue wear and matrix oxidation, hindering the propagation of thermal cracks.

Funder

Science and Technology Innovation Development Project of Yantai

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3