Correlation between Microstructure and Chemical Composition of Zinc Oxide Gas Sensor Layers and Their Gas-Sensitive Properties in Chlorine Atmosphere

Author:

Fiedot-Toboła MartaORCID,Suchorska-Woźniak PatrycjaORCID,Startek Kamila,Rac-Rumijowska OlgaORCID,Szukiewicz Rafał,Kwoka MonikaORCID,Teterycz HelenaORCID

Abstract

In this article, we present results concerning the impact of structural and chemical properties of zinc oxide in various morphological forms and its gas-sensitive properties, tested in an atmosphere containing a very aggressive gas such as chlorine. The aim of this research was to understand the mechanism of chlorine detection using a resistive gas sensor with an active layer made of zinc oxide with a different structure and morphology. Two types of ZnO sensor layers obtained by two different technological methods were used in sensor construction. Their morphology, crystal structure, specific surface area, porosity, surface chemistry and structural defects were characterized, and then compared with gas-sensitive properties in a chlorine-containing atmosphere. To achieve this goal, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL) methods were used. The sensing properties of obtained active layers were tested by the temperature stimulated conductance method (TSC). We have noticed that their response in a chlorine atmosphere is not determined by the size of the specific surface or porosity. The obtained results showed that the structural defects of ZnO crystals play the most important role in chlorine detection. We demonstrated that Cl2 adsorption is a concurrent process to oxygen adsorption. Both of them occur on the same active species (oxygen vacancies). Their concentration is higher on the side planes of the zinc oxide crystal than the others. Additionally, ZnO sublimation process plays an important role in the chlorine detection mechanism.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3