A Direct Analysis of β-N-methylamino-l-alanine Enantiomers and Isomers and Its Application to Cyanobacteria and Marine Mollusks

Author:

Metcalf James S.12,Banack Sandra Anne1,Wyatt Peter B.3ORCID,Nunn Peter B.3,Cox Paul A.1

Affiliation:

1. Brain Chemistry Labs, Box 3464, Jackson, WY 83001, USA

2. Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA

3. The School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK

Abstract

Of the wide variety of toxic compounds produced by cyanobacteria, the neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) has attracted attention as a result of its association with chronic human neurodegenerative diseases such as ALS and Alzheimer’s. Consequently, specific detection methods are required to assess the presence of BMAA and its isomers in environmental and clinical materials, including cyanobacteria and mollusks. Although the separation of isomers such as β-amino-N-methylalanine (BAMA), N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) from BMAA has been demonstrated during routine analysis, a further compounding factor is the potential presence of enantiomers for some of these isomers. Current analytical methods for BMAA mostly do not discriminate between enantiomers, and the chiral configuration of BMAA in cyanobacteria is still largely unexplored. To understand the potential for the occurrence of D-BMAA in cyanobacteria, a chiral UPLC-MS/MS method was developed to separate BMAA enantiomers and isomers and to determine the enantiomeric configuration of endogenous free BMAA in a marine Lyngbya mat and two mussel reference materials. After extraction, purification and derivatization with N-(4-nitrophenoxycarbonyl)-l-phenylalanine 2-methoxyethyl ester ((S)-NIFE), both L- and D-BMAA were identified as free amino acids in cyanobacterial materials, whereas only L-BMAA was identified in mussel tissues. The finding of D-BMAA in biological environmental materials raises questions concerning the source and role of BMAA enantiomers in neurological disease.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3