Machine Learning with Alpha Toxin Phenotype to Predict Clinical Outcome in Patients with Staphylococcus aureus Bloodstream Infection

Author:

Beadell Brent1ORCID,Nehra Surya2,Gusenov Elizabeth1,Huse Holly3,Wong-Beringer Annie14ORCID

Affiliation:

1. Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA

2. Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA

3. Department of Microbiology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA

4. Department of Pharmacy, Huntington Hospital, Pasadena, CA 91105, USA

Abstract

Staphylococcus aureus bloodstream (SAB) infection remains a leading cause of sepsis-related mortality. Yet, current treatment does not account for variable virulence traits that mediate host dysregulated immune response, such as SA α-toxin (Hla)-mediated thrombocytopenia. Here, we applied machine learning (ML) to bacterial growth images combined with platelet count data to predict patient outcomes. We profiled Hla phenotypes of SA isolates collected from patients with bacteremia by taking smartphone images of beta-hemolytic growth on sheep blood agar (SBA). Electronic medical records were reviewed to extract relevant laboratory and clinical data. A convolutional neural network was applied to process the plate image data for input along with day 1 patient platelet count to generate ML-based models that predict thrombocytopenia on day 4 and mortality. A total of 229 patients infected with SA strains exhibiting varying zone sizes of beta-hemolysis on SBA were included. A total of 539 images of bacterial growth on SBA were generated as inputs for model development. One-third of patients developed thrombocytopenia at onset, with an overall mortality rate of 18.8%. The models developed from the ML algorithm showed strong performance (AUC 0.92) for predicting thrombocytopenia on day 4 of infection and modest performance (AUC 0.711) for mortality. Our findings support further development and validation of a proof-of-concept ML application in digital microbiology, with a measure of bacterial virulence factor production that carries prognostic significance and can help guide treatment selection.

Funder

National Institute of Dental and Craniofacial Research

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3