Anti-Toxoplasma gondii Effects of Lipopeptide Derivatives of Lycosin-I

Author:

Liu Xiaohua1,Zhang Peng2,Liu Yuan1,Li Jing1,Yang Dongqian1,Liu Zhonghua2,Jiang Liping13ORCID

Affiliation:

1. Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China

2. The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China

3. China-Africa Research Center of Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha 410013, China

Abstract

Toxoplasmosis, caused by Toxoplasma gondii (T. gondii), is a serious zoonotic parasitic disease. We previously found that Lycosin-I exhibited anti-T. gondii activity, but its serum stability was not good enough. In this study, we aimed to improve the stability and activity of Lycosin-I through fatty acid chain modification, so as to find a better anti-T. gondii drug candidate. The α/ε-amino residues of different lysine residues of Lycosin-I were covalently coupled with lauric acid to obtain eight lipopeptides, namely L-C12, L-C12-1, L-C12-2, L-C12-3, L-C12-4, L-C12-5, L-C12-6, and L-C12-7. Among these eight lipopeptides, L-C12 showed the best activity against T. gondii in vitro in a trypan blue assay. We then conjugated a shorter length fatty chain, aminocaproic acid, at the same modification site of L-C12, namely L-an. The anti-T. gondii effects of Lycosin-I, L-C12 and L-an were evaluated via an invasion assay, proliferation assay and plaque assay in vitro. A mouse model acutely infected with T. gondii tachyzoites was established to evaluate their efficacy in vivo. The serum stability of L-C12 and L-an was improved, and they showed comparable or even better activity than Lycosin-I did in inhibiting the invasion and proliferation of tachyzoites. L-an effectively prolonged the survival time of mice acutely infected with T. gondii. These results suggest that appropriate fatty acid chain modification can improve serum stability and enhance anti-T. gondii effect of Lycosin-I. The lipopeptide derivatives of Lycosin-I have potential as a novel anti-T. gondii drug candidate.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Open Sharing Fund for the Large-Scale Instruments and Equipment of Central South University

Science Popularization project of Hunan Province

Graduate Case base construction project of Central South University

Graduate Research and Innovation Project of Hunan Province

Graduate Research and Innovation Project of Central South University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3