Affiliation:
1. Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5001 Campus Drive, College Park, MD 20740, USA
Abstract
Sample homogeneity dictates whether analyzing a test portion of an entire sample can provide representative information about incurred mycotoxins. In this study, we evaluated particle-size-distribution-based homogeneity of laboratory mycotoxin samples using laser diffraction particle size analysis and International Organization for Standardization (ISO) Guide 35: 2017. Incurred whole corn, compound feed, peanut butter, and wheat flour (500 g each) were comminuted using wet, cryogenic, or dry milling. We used a sample dividing (riffling) device to obtain representative subsamples (25 g each) and developed a laser diffraction particle size analysis procedure by optimizing key parameters such as the refractive index, absorption, and stirring rate. The homogeneity of the particle size distribution within laboratory subsamples was characterized using the optimized laser diffraction procedure. An assessment of homogeneity was also performed for individual mycotoxins in each incurred matrix sample following the procedure described in ISO Guide 35. The concentrations of the incurred mycotoxins were determined using liquid chromatography–mass spectrometry (LC-MS). Within- and between-subsample variances of incurred aflatoxin B1 in peanut butter; deoxynivalenol in corn, compound feed, and wheat flour; and fumonisins in compound feed corroborated that when the particle size measurements were less than 850 µm, mycotoxins concentrations were consistent across independent test portions, which was confirmed using an analysis of variance (F-test). This study highlights the benefits of laser diffraction particle size analysis and suggests its use as a test procedure to evaluate homogeneity in new sample commodities.
Subject
Health, Toxicology and Mutagenesis,Toxicology
Reference44 articles.
1. Sampling, sample preparation, and sampling plans for foodstuffs for mycotoxin analysis;Campbell;Pure Appl. Chem.,1986
2. European Commission (2023, June 06). Commission Regulation (EC) No 401/2006 of 23 February 2006 Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R0401&from=EN.
3. Food and Drug Administration (2023, July 03). The Investigations Operations Manual (IOM) Chapter 4—Sampling, Available online: https://www.fda.gov/media/75243/download.
4. Review of current and future analytical methods for the determination of mycotoxins?;Crosby;Food Addit. Contam.,1984
5. Mycotoxin analysis: An update;Krska;Food Addit. Contam. Part A,2008
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献