A Metalloproteinase Cocktail from the Venom of Protobothrops flavoviridis Cleaves Amyloid Beta Peptides at the α-Cleavage Site

Author:

Futai Eugene1ORCID,Kawasaki Hajime1,Sato Shinichi2ORCID,Daoudi Khadija1ORCID,Hidaka Masafumi1,Tomita Taisuke3,Ogawa Tomohisa1ORCID

Affiliation:

1. Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan

2. Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan

3. Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

A disintegrin and metalloproteinase (ADAM) family proteins are a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell surface protein ectodomains, including amyloid precursor protein (APP). Human ADAM 9, 10, and 17 proteolyze APPs and produce non-amyloid-genic p3 peptides, instead of neurotoxic amyloid-β peptides (Aβs; Aβ40 and Aβ42), which form fibrils and accumulate in the brain of patients with Alzheimer’s disease (AD). The ADAM family is closely related to snake venom metalloproteinases (SVMPs), which are derived from ancestral ADAMs but act as soluble proteinases. To test the therapeutic potential of SVMPs, we purified SVMPs from Protobothrops flavoviridis venom using metal ion affinity and pooled into a cocktail. Thus, 9 out of 11 SVMPs in the P. flavoviridis genome were identified in the cocktail. SVMPs inhibited Aβ secretion when added to human cell culture medium without affecting APP proteolysis. SVMPs degraded synthetic Aβ40 and Aβ42 peptides at the same cleavage site (α-site of APP) as ADAM9, 10, and 17. SVMPs did not degrade Aβ fibrils but interfered with their formation, assessed using thioflavin-T. Thus, SVMPs have therapeutic potential for AD as an Aβ-degrading protease, and the finding adds to the discovery of bioactive peptides from venoms as novel therapeutics.

Funder

Ministry of Education, Culture, Sports, Science, and Technology, Japan

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3