Effect of Hydrogen Sulfide on Essential Functions of Polymorphonuclear Leukocytes

Author:

Farahat Sarah1,Kherkheulidze Salome1,Nopp Stephan1ORCID,Kainz Alexander1,Borriello Margherita2,Perna Alessandra F.3ORCID,Cohen Gerald1

Affiliation:

1. Department of Nephrology and Dialysis, Medical University of Vienna, A-1090 Vienna, Austria

2. Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy

3. Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy

Abstract

Impaired polymorphonuclear leukocyte (PMNL) functions contribute to increased infections and cardiovascular diseases in chronic kidney disease (CKD). Uremic toxins reduce hydrogen sulfide (H2S) levels and the anti-oxidant and anti-inflammatory effects of H2S. Its biosynthesis occurs as a side process of transsulfuration and in the disposal of adenosylhomocysteine, a transmethylation inhibitor and proposed uremic toxin. PMNL chemotaxis was measured by the under-agarose method, phagocytosis, and oxidative burst by flow cytometry in whole blood and apoptosis by determining DNA content by flow cytometry and morphological features by fluorescence microscopy. Sodium hydrogen sulfide (NaHS), diallyl trisulphide (DATS) and diallyl disulphide (DADS), cysteine, and GYY4137 were used as H2S-producing substances. Increased H2S concentrations did not affect chemotaxis and phagocytosis. NaHS primed PMNL oxidative burst activated by phorbol 12-myristate 13-acetate (PMA) or E. coli. Both DATS and cysteine significantly decreased E. coli-activated oxidative burst but had no effect on PMA stimulation. While NaHS, DADS, and cysteine attenuated PMNL apoptosis, GYY4137 decreased their viability. Experiments with signal transduction inhibitors suggest that the intrinsic apoptosis pathway is mainly involved in GYY4137-induced PMNL apoptosis and that GYY4137 and cysteine target signaling downstream of phosphoinositide 3-kinase.

Funder

European Uremic Toxin Work Group

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3