Adsorption- and Displacement-Based Approaches for the Removal of Protein-Bound Uremic Toxins

Author:

Rodrigues Flávia S. C.1ORCID,Faria Mónica12ORCID

Affiliation:

1. Laboratory of Physics of Materials and Emerging Technologies (LaPMET), Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

2. Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Abstract

End-stage renal disease (ESRD) patients rely on renal replacement therapies to survive. Hemodialysis (HD), the most widely applied treatment, is responsible for the removal of excess fluid and uremic toxins (UTs) from blood, particularly those with low molecular weight (MW < 500 Da). The development of high-flux membranes and more efficient treatment modes, such as hemodiafiltration, have resulted in improved removal rates of UTs in the middle molecular weight range. However, the concentrations of protein-bound uremic toxins (PBUTs) remain essentially untouched. Due to the high binding affinity to large proteins, such as albumin, PBUTs form large complexes (MW > 66 kDa) which are not removed during HD and their accumulation has been strongly associated with the increased morbidity and mortality of patients with ESRD. In this review, we describe adsorption- and displacement-based approaches currently being studied to enhance the removal of PBUTs. The development of mixed matrix membranes (MMMs) with selective adsorption properties, infusion of compounds capable of displacing UTs from their binding site on albumin, and competitive binding membranes show promising results, but the road to clinical application is still long, and further investigation is required.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3