Adsorptive Removal of Naproxen from Water Using Polyhedral Oligomeric Silesquioxane (POSS) Covalent Organic Frameworks (COFs)

Author:

Bala Suleiman,Abdullah Che Azurahanim Che,Tahir Mohamed Ibrahim Mohamed,Abdul Rahman Mohd BasyaruddinORCID

Abstract

Covalent organic frameworks are porous crystalline compounds made up of organic material bonded together by strong reversible covalent bonds (these are novel types of materials which have the processability of extended or repeated structures with high performance, like those of thermosets and thermoplastics that produce high surface coverage). These have a long-term effect on an arrangement’s geometry and permeability. These compounds are entirely made up of light elements like H, B, C, N, O and Si. Pharmaceuticals and personal care products (PPCPs) have emerged as a new threatened species. A hazardous substance known as an “emerging toxin,” such as naproxen, is one that has been established or is generated in sufficient amounts in an environment, creating permanent damage to organisms. COF-S7, OAPS and 2-methylanthraquionone(2-MeAQ), and COF-S12, OAPS and terephthalaldehyde (TPA) were effectively synthesized by condensation (solvothermal) via a Schiff base reaction (R1R2C=NR′), with a molar ratio of 1:8 for OAPS to linker (L1 and L2), at a temperature of 125 °C and 100 °C for COF-S7 and COF-S12, respectively. The compounds obtained were assessed using several spectroscopy techniques, which revealed azomethine C=N bonds, aromatic carbon environments via solid 13C and 29Si NMR, the morphological structure and porosity, and the thermostability of these materials. The remedied effluent was investigated, and a substantial execution was noted in the removal ability of the naproxen over synthesized materials, such as 70% and 86% at a contact time of 210 min and 270 min, respectively, at a constant dose of 0.05 g and pH 7. The maximum adsorption abilities of the substances were found to be 35 mg/g and 42 mg/g. The pH result implies that there is stable exclusion with a rise in pH to 9. At pH 9, the drop significance was attained for COF-S7 with the exception of COF-S12, which was detected at pH 11, due to the negative Foster charge, consequent to the repulsion among the synthesized COFs and naproxen solution. From the isotherms acquired (Langmuir and Freundlich), the substances displayed a higher value (close to 1) of correlation coefficient (R2), which showed that the substances fit into the Freundlich isotherm (heterogenous process), and the value of heterogeneity process (n) achieved (less than 1) specifies that the adsorption is a chemical process. Analysis of the as-prepared composites revealed remarkable reusability in the elimination of naproxen by adsorption. Due to its convenience of synthesis, significant adsorption effectiveness, and remarkable reusability, the as-synthesized COFs are expected to be able to be used as potential adsorbents for eliminating AIDs from water.

Funder

Universiti Putra Malaysia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3