Semiconductor Quantum Dots as Target Analytes: Properties, Surface Chemistry and Detection

Author:

Sanmartín-Matalobos JesúsORCID,Bermejo-Barrera Pilar,Aboal-Somoza ManuelORCID,Fondo MatildeORCID,García-Deibe Ana M.ORCID,Corredoira-Vázquez JulioORCID,Alves-Iglesias YenevaORCID

Abstract

Since the discovery of Quantum Dots (QDs) by Alexey I. Ekimov in 1981, the interest of researchers in that particular type of nanomaterials (NMs) with unique optical and electrical properties has been increasing year by year. Thus, since 2009, the number of scientific articles published on this topic has not been less than a thousand a year. The increasing use of QDs due to their biomedical, pharmaceutical, biological, photovoltaics or computing applications, as well as many other high-tech uses such as for displays and solid-state lighting (SSL), has given rise to a considerable number of studies about its potential toxicity. However, there are a really low number of reported studies on the detection and quantification of QDs, and these include ICP–MS and electrochemical analysis, which are the most common quantification techniques employed for this purpose. The knowledge of chemical phenomena occurring on the surface of QDs is crucial for understanding the interactions of QDs with species dissolved in the dispersion medium, while it paves the way for a widespread use of chemosensors to facilitate its detection. Keeping in mind both human health and environmental risks of QDs as well as the scarcity of analytical techniques and methodological approaches for their detection, the adaptation of existing techniques and methods used with other NMs appears necessary. In order to provide a multidisciplinary perspective on QD detection, this review focused on three interrelated key aspects of QDs: properties, surface chemistry and detection.

Funder

Ministerio de Ciencia, Innovación y Universidades of Spain and Unión Europea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3