Machine Learning Classification of Time since BNT162b2 COVID-19 Vaccination Based on Array-Measured Antibody Activity

Author:

Ma Qing-Lan1,Huang Fei-Ming1,Guo Wei2,Feng Kai-Yan3,Huang Tao45ORCID,Cai Yu-Dong1ORCID

Affiliation:

1. School of Life Sciences, Shanghai University, Shanghai 200444, China

2. Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China

3. Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China

4. Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China

5. CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Abstract

Vaccines trigger an immunological response that includes B and T cells, with B cells producing antibodies. SARS-CoV-2 immunity weakens over time after vaccination. Discovering key changes in antigen-reactive antibodies over time after vaccination could help improve vaccine efficiency. In this study, we collected data on blood antibody levels in a cohort of healthcare workers vaccinated for COVID-19 and obtained 73 antigens in samples from four groups according to the duration after vaccination, including 104 unvaccinated healthcare workers, 534 healthcare workers within 60 days after vaccination, 594 healthcare workers between 60 and 180 days after vaccination, and 141 healthcare workers over 180 days after vaccination. Our work was a reanalysis of the data originally collected at Irvine University. This data was obtained in Orange County, California, USA, with the collection process commencing in December 2020. British variant (B.1.1.7), South African variant (B.1.351), and Brazilian/Japanese variant (P.1) were the most prevalent strains during the sampling period. An efficient machine learning based framework containing four feature selection methods (least absolute shrinkage and selection operator, light gradient boosting machine, Monte Carlo feature selection, and maximum relevance minimum redundancy) and four classification algorithms (decision tree, k-nearest neighbor, random forest, and support vector machine) was designed to select essential antibodies against specific antigens. Several efficient classifiers with a weighted F1 value around 0.75 were constructed. The antigen microarray used for identifying antibody levels in the coronavirus features ten distinct SARS-CoV-2 antigens, comprising various segments of both nucleocapsid protein (NP) and spike protein (S). This study revealed that S1 + S2, S1.mFcTag, S1.HisTag, S1, S2, Spike.RBD.His.Bac, Spike.RBD.rFc, and S1.RBD.mFc were most highly ranked among all features, where S1 and S2 are the subunits of Spike, and the suffixes represent the tagging information of different recombinant proteins. Meanwhile, the classification rules were obtained from the optimal decision tree to explain quantitatively the roles of antigens in the classification. This study identified antibodies associated with decreased clinical immunity based on populations with different time spans after vaccination. These antibodies have important implications for maintaining long-term immunity to SARS-CoV-2.

Funder

National Key R&D Program of China

Strategic Priority Research Program of Chinese Academy of Sciences

Fund of the Key Laboratory of Tissue Microenvironment and Tumor of Chinese Academy of Sciences

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3