Experimental Evaluation of Enhanced Oil Recovery in Shale Reservoirs Using Different Media

Author:

Tao Jiaping12ORCID,Meng Siwei12ORCID,Li Dongxu3,Liang Lihao1,Liu He12

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

2. State Key Laboratory of Continental Shale Oil, Daqing 163002, China

3. PetroChina Daqing Oilfield Co., Ltd., Daqing 163002, China

Abstract

The presence of highly developed micro-nano pores and poor pore connectivity constrains the development of shale oil. Given the rapid decline in oil production , enhanced oil recovery (EOR) technologies are necessary for shale oil development. The shale oil reservoirs in China are mainly continental and characterized by high heterogeneity, low overall maturity, and inferior crude oil quality. Therefore, it is more challenging to achieve a desirably high recovery factor. The Qingshankou Formation is a typical continental shale oil reservoir, with high clay content and well-developed bedding. This paper introduced high-precision non-destructive nuclear magnetic resonance technology to carry out a systematic and targeted study. The EOR performances and oil recovery factors related to different pore sizes were quantified to identify the most suitable method. The results show that surfactant, CH4, and CO2 can recover oil effectively in the first cycle. As the huff-and-puff process continues, the oil saturated in the shale gradually decreases, and the EOR performance of the surfactant and CH4 is considerably degraded. Meanwhile, CO2 can efficiently recover oil in small pores (<50 nm) and maintain good EOR performance in the second and third cycles. After four huff-and-puff cycles, the average oil recovery of CO2 is 38.22%, which is much higher than that of surfactant (29.82%) and CH4 (19.36%). CO2 is the most applicable medium of the three to enhance shale oil recovery in the Qingshankou Formation. Additionally, the injection pressure of surfactant increased the fastest in the injection process, showing a low flowability in nano-pores. Thus, in the actual shale oil formations, the swept volume of surfactant will be suppressed, and the actual EOR performance of the surfactant may be limited. The findings of this paper can provide theoretical support for the efficient development of continental shale oil reservoirs.

Funder

“Enlisting and Leading” Science and Technology Project of Heilongjiang Province

Technology Project of CNPC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3