Deep-Learning-Based Classification of Cyclic-Alternating-Pattern Sleep Phases

Author:

Kahana Yoav1,Aberdam Aviad2,Amar Alon1,Cohen Israel1ORCID

Affiliation:

1. Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion—Israel Institute of Technology, Technion City, Haifa 3200003, Israel

2. AWS AI Labs, Amazon, Haifa 3760105, Israel

Abstract

Determining the cyclic-alternating-pattern (CAP) phases in sleep using electroencephalography (EEG) signals is crucial for assessing sleep quality. However, most current methods for CAP classification primarily rely on classical machine learning techniques, with limited implementation of deep-learning-based tools. Furthermore, these methods often require manual feature extraction. Herein, we propose a fully automatic deep-learning-based algorithm that leverages convolutional neural network architectures to classify the EEG signals via their time-frequency representations. Through our investigation, we explored using time-frequency analysis techniques and found that Wigner-based representations outperform the commonly used short-time Fourier transform for CAP classification. Additionally, our algorithm incorporates contextual information of the EEG signals and employs data augmentation techniques specifically designed to preserve the time-frequency structure. The model is developed using EEG signals of healthy subjects from the publicly available CAP sleep database (CAPSLPDB) on Physionet. An experimental study demonstrates that our algorithm surpasses existing machine-learning-based methods, achieving an accuracy of 77.5% on a balanced test set and 81.8% when evaluated on an unbalanced test set. Notably, the proposed algorithm exhibits efficiency and scalability, making it suitable for on-device implementation to enhance CAP identification procedures.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3