Affiliation:
1. State Grid Zhejiang Marketing Service Center, Hangzhou 310030, China
2. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Abstract
Industrial parks, characterized by the clustering of multiple factories and interconnected energy sources, require optimized operational strategies for their Integrated Energy Systems (IES). These strategies not only aim to conserve energy for industrial users but also relieve the burden on the power supply, reducing carbon emissions. In this context, this paper introduces an optimization strategy tailored to clustered factories, considering the incorporation of carbon trading and supply chain integration throughout the entire production process of each factory. First, a workshop model is established for each factory, accompanied by an energy consumption model that accounts for the strict sequencing of the production process and supply chain integration. Furthermore, energy unit models are devised for the IES and then a low-carbon and economically optimized scheduling model is outlined for the IES within the industrial park, aiming to minimize the total operational cost, including the cost of carbon trading. Finally, case studies are conducted within a paper-making industrial park located in the Zhejiang Province. Various scenarios are compared and analyzed. The numerical results underscore the model’s economic and low-carbon merits, and it offers technical support for energy conservation and emission reduction in paper-making fields.
Funder
Science and Technology Project of State Grid
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献