Is the Production of Agricultural Biogas Environmentally Friendly? Does the Structure of Consumption of First- and Second-Generation Raw Materials in Latvia and Poland Matter?

Author:

Wicki LudwikORCID,Naglis-Liepa Kaspars,Filipiak TadeuszORCID,Parzonko Andrzej,Wicka Aleksandra

Abstract

The importance of biogas in the energy mix in Poland and Latvia is very low. In Poland, 306 million m3 of biogas is produced annually, and in Latvia, 56 million m3. The share of energy from agricultural biogas in Latvia is 1.6%, and in Poland, only 0.12%. This study analyzed the impact of the structure on CO2 emissions from agricultural biogas production in Latvia and Poland. The emission was determined in accordance with the EU directive. The structure of substrates was dominated by those from the second generation, i.e., manure and food waste. In Latvia, it was 70%, and in Poland, 78%. The manure share was 45% and 24%, respectively. The anaerobic digestion of manure guarantees high GHG savings thanks to the avoided emissions from the traditional storage and management of raw manure as organic fertilizer. The level of emissions from the production of agricultural biogas was calculated for the variant with the use of closed digestate tanks, and it was about 10–11 g CO2/MJ, which is comparable to the emissions from solar photovoltaic sources. When using open tanks, the emission level was twice as high, but it was still many times less than from the Polish or Latvian energy mix. Such a low level of emissions resulted from the high share of manure. The level of emission reduction reached 90% compared to fossil fuels. The use of second-generation feedstock in biogas production provides environmental benefits. Therefore, if wastes are used in biogas generation, and the influence on the local environment and overall GHG emissions is positive, authorities should support such activity.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3