Radiomics Texture Analysis of Bone Marrow Alterations in MRI Knee Examinations

Author:

Kostopoulos Spiros1ORCID,Boci Nada23,Cavouras Dionisis1,Tsagkalis Antonios4,Papaioannou Maria3,Tsikrika Alexandra5ORCID,Glotsos Dimitris1,Asvestas Pantelis1ORCID,Lavdas Eleftherios23

Affiliation:

1. Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, University of West Attica, 12241 Athens, Greece

2. Department of Biomedical Sciences, University of West Attica, 12241 Athens, Greece

3. Department of Radiology, Animus Kyanous Stavros, 57014 Larissa, Greece

4. Department of Orthopedic, Animus Kyanous Stavros, 57014 Larissa, Greece

5. Department of Radiology, General University Hospital of Larissa, 41334 Larissa, Greece

Abstract

Accurate diagnosis and timely intervention are key to addressing common knee conditions effectively. In this work, we aim to identify textural changes in knee lesions based on bone marrow edema (BME), injury (INJ), and osteoarthritis (OST). One hundred and twenty-one MRI knee examinations were selected. Cases were divided into three groups based on radiological findings: forty-one in the BME, thirty-seven in the INJ, and forty-three in the OST groups. From each ROI, eighty-one radiomic descriptors were calculated, encoding texture information. The results suggested differences in the texture characteristics of regions of interest (ROIs) extracted from PD-FSE and STIR sequences. We observed that the ROIs associated with BME exhibited greater local contrast and a wider range of structural diversity compared to the ROIs corresponding to OST. When it comes to STIR sequences, the ROIs related to BME showed higher uniformity in terms of both signal intensity and the variability of local structures compared to the INJ ROIs. A combined radiomic descriptor managed to achieve a high separation ability, with AUC of 0.93 ± 0.02 in the test set. Radiomics analysis may provide a non-invasive and quantitative means to assess the spatial distribution and heterogeneity of bone marrow edema, aiding in its early detection and characterization.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3