Artificial Intelligence, Intrapartum Ultrasound and Dystocic Delivery: AIDA (Artificial Intelligence Dystocia Algorithm), a Promising Helping Decision Support System

Author:

Malvasi Antonio1,Malgieri Lorenzo E.2ORCID,Cicinelli Ettore1ORCID,Vimercati Antonella3ORCID,D’Amato Antonio1ORCID,Dellino Miriam1,Trojano Giuseppe4,Difonzo Tommaso1,Beck Renata5ORCID,Tinelli Andrea6ORCID

Affiliation:

1. Department of Interdisciplinary Medicine (DIM), Unit of Obstetrics and Gynecology, University of Bari “Aldo Moro”, Policlinico of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy

2. FIAT-ENI, Environmental Companies, and Chief Innovation Officer in CLE, 70124 Bari, Italy

3. Department of Precision and Regenerative Medicine and Jonic Area, University of Bari “Aldo Moro”, 70121 Bari, Italy

4. Department of Maternal, Child Gynecologic Oncology Unit, “Madonna delle Grazie” Hospital ASM, 75100 Matera, Italy

5. Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, Policlinico Riuniti Foggia, University of Foggia, 71122 Foggia, Italy

6. Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris delli Ponti Hospital Scorrano, 73020 Lecce, Italy

Abstract

The position of the fetal head during engagement and progression in the birth canal is the primary cause of dystocic labor and arrest of progression, often due to malposition and malrotation. The authors performed an investigation on pregnant women in labor, who all underwent vaginal digital examination by obstetricians and midwives as well as intrapartum ultrasonography to collect four “geometric parameters”, measured in all the women. All parameters were measured using artificial intelligence and machine learning algorithms, called AIDA (artificial intelligence dystocia algorithm), which incorporates a human-in-the-loop approach, that is, to use AI (artificial intelligence) algorithms that prioritize the physician’s decision and explainable artificial intelligence (XAI). The AIDA was structured into five classes. After a number of “geometric parameters” were collected, the data obtained from the AIDA analysis were entered into a red, yellow, or green zone, linked to the analysis of the progress of labor. Using the AIDA analysis, we were able to identify five reference classes for patients in labor, each of which had a certain sort of birth outcome. A 100% cesarean birth prediction was made in two of these five classes. The use of artificial intelligence, through the evaluation of certain obstetric parameters in specific decision-making algorithms, allows physicians to systematically understand how the results of the algorithms can be explained. This approach can be useful in evaluating the progress of labor and predicting the labor outcome, including spontaneous, whether operative VD (vaginal delivery) should be attempted, or if ICD (intrapartum cesarean delivery) is preferable or necessary.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3