Source Camera Identification Techniques: A Survey

Author:

Nwokeji Chijioke Emeka1,Sheikh-Akbari Akbar1ORCID,Gorbenko Anatoliy1,Mporas Iosif2ORCID

Affiliation:

1. School of Built Environment, Engineering, and Computing, Leeds Beckett University, Leeds LS6 3QR, UK

2. School of Physics, Engineering & Computer Science, University of Hertfordshire, Hertfordshire AL10 9AB, UK

Abstract

The successful investigation and prosecution of significant crimes, including child pornography, insurance fraud, movie piracy, traffic monitoring, and scientific fraud, hinge largely on the availability of solid evidence to establish the case beyond any reasonable doubt. When dealing with digital images/videos as evidence in such investigations, there is a critical need to conclusively prove the source camera/device of the questioned image. Extensive research has been conducted in the past decade to address this requirement, resulting in various methods categorized into brand, model, or individual image source camera identification techniques. This paper presents a survey of all those existing methods found in the literature. It thoroughly examines the efficacy of these existing techniques for identifying the source camera of images, utilizing both intrinsic hardware artifacts such as sensor pattern noise and lens optical distortion, and software artifacts like color filter array and auto white balancing. The investigation aims to discern the strengths and weaknesses of these techniques. The paper provides publicly available benchmark image datasets and assessment criteria used to measure the performance of those different methods, facilitating a comprehensive comparison of existing approaches. In conclusion, the paper outlines directions for future research in the field of source camera identification.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3