Clinically Inspired Skin Lesion Classification through the Detection of Dermoscopic Criteria for Basal Cell Carcinoma

Author:

Serrano CarmenORCID,Lazo Manuel,Serrano Amalia,Toledo-Pastrana TomásORCID,Barros-Tornay Rubén,Acha BegoñaORCID

Abstract

Background and Objective. Skin cancer is the most common cancer worldwide. One of the most common non-melanoma tumors is basal cell carcinoma (BCC), which accounts for 75% of all skin cancers. There are many benign lesions that can be confused with these types of cancers, leading to unnecessary biopsies. In this paper, a new method to identify the different BCC dermoscopic patterns present in a skin lesion is presented. In addition, this information is applied to classify skin lesions into BCC and non-BCC. Methods. The proposed method combines the information provided by the original dermoscopic image, introduced in a convolutional neural network (CNN), with deep and handcrafted features extracted from color and texture analysis of the image. This color analysis is performed by transforming the image into a uniform color space and into a color appearance model. To demonstrate the validity of the method, a comparison between the classification obtained employing exclusively a CNN with the original image as input and the classification with additional color and texture features is presented. Furthermore, an exhaustive comparison of classification employing different color and texture measures derived from different color spaces is presented. Results. Results show that the classifier with additional color and texture features outperforms a CNN whose input is only the original image. Another important achievement is that a new color cooccurrence matrix, proposed in this paper, improves the results obtained with other texture measures. Finally, sensitivity of 0.99, specificity of 0.94 and accuracy of 0.97 are achieved when lesions are classified into BCC or non-BCC. Conclusions. To the best of our knowledge, this is the first time that a methodology to detect all the possible patterns that can be present in a BCC lesion is proposed. This detection leads to a clinically explainable classification into BCC and non-BCC lesions. In this sense, the classification of the proposed tool is based on the detection of the dermoscopic features that dermatologists employ for their diagnosis.

Funder

Ministry of Economy, Industry and Competitiveness

Regional Government of Andalusia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference66 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3