Use of Multispectral Microscopy in the Prediction of Coated Halftone Reflectance

Author:

Dailliez Fanny,Hébert Mathieu,Chagas Lionel,Fournel Thierry,Blayo Anne

Abstract

When a print is coated with a transparent layer, such as a lamination film or a varnish layer, its color can be modified compared to the uncoated version due to multiple reflections between the layer-air interface and the inked substrate. These interreflections involve a multiple-convolution process between the halftone pattern and a ring-shaped luminous halo. They are described by an optical model which we have developed. The challenge at stake is to observe the impact of the coated layer on the print spectral reflectances and see if it can be predicted. The approach is based on pictures of the print captured with a multispectral microscope that are processed through the optical model to predict the spectral pictures of the coated print. The pictures averaged on the spatial dimension led to spectral reflectances which can be compared with macroscale measurements performed with a spectrophotometer. Comparison between macroscale measurements and microscale measurements with a multispectral microscope being delicate, specific care has been taken to calibrate the instruments. This method resulted in fairly conclusive predictions, both at the macroscale with the spectral reflectances, and at the microscale with an accurate prediction of the blurring effect induced by the multi-convolutive optical process. The tests carried out showed that the optical and visual effect of a coating layer on single-ink or multi-ink halftones with various patterns can be predicted with a satisfactory accuracy. Hence, by measuring the spatio-spectral reflectance of the uncoated print and predicting the spatio-spectral reflectance of the coating print, we can predict the color changes due to the coating itself. The model could be included in color management workflows for printing applications including a finishing coating.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference31 articles.

1. Handbook of Print Media;Kipphan,2001

2. Assessing Historical Printed Materials Using the Combination of Historical Information and Imaging Techniques. Case Study: Greek Postcards of the Early 20th Century;Kokla;Int. Circ. Graph. Educ. Res.,2021

3. Effects of Varnish on Printed Material;Childers,2008

4. Color reproduction on varnished cardboard packaging by using lower ink coverages due to the gray component replacement image processing

5. The Influence of UV Varnish on Colorimetric Properties of Spot Colors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3