Dietary Supplementation of Cedryl Acetate Ameliorates Adiposity and Improves Glucose Homeostasis in High-Fat Diet-Fed Mice

Author:

Guo Jingya1,Li Mengjie1,Zhao Yuhan1,Kang Seong-Gook2ORCID,Huang Kunlun134,Tong Tao134ORCID

Affiliation:

1. Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

2. Department of Food Engineering, Mokpo National University, Muangun 58554, Republic of Korea

3. Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the China, Beijing 100083, China

4. Beijing Laboratory for Food Quality and Safety, Beijing 100083, China

Abstract

Cedryl acetate (CA), also called acetyl cedrene, is approved by the FDA as a flavoring or adjuvant to be added to foods. In this study, we aimed to investigate the preventive benefits of CA on obesity and obesity-related metabolic syndrome caused by a high-fat diet (HFD). Three groups of C57BL/6J mice (ten-week-old) were fed Chow, an HFD, or an HFD with CA supplementation (100 mg/kg) for 19 weeks. We observed that CA supplementation significantly reduced weight gain induced by an HFD, decreased the weight of the visceral fat pads, and prevented adipocyte hypertrophy in mice. Moreover, mice in the CA group showed significant improvements in hepatic lipid accumulation, glucose intolerance, insulin resistance, and gluconeogenesis compared with the mice in the HFD group. Since 16S rRNA analysis revealed that the gut microbiota in the CA and HFD groups were of similar compositions at the phylum and family levels, CA may have limited effects on gut microbiota in HFD-fed mice. The beneficial effects on the metabolic parameters of CA were reflected by CA’s regulation of metabolism-related gene expression in the liver (including Pepck, G6Pase, and Fbp1) and the epididymal white adipose tissues (including PPARγ, C/EBPα, FABP4, FAS, Cytc, PGC-1α, PRDM16, Cidea, and COX4) of the mice. In summary, a potent preventive effect of CA on HFD-induced obesity and related metabolic syndrome was highlighted by our results, and CA could be a promising dietary component for obesity intervention.

Funder

Beijing Natural Science Foundation

Shandong Provincial Natural Science Foundation

2115 Talent Development Program of China Agricultural University

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference51 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3