Optimization and Process Effect for Microalgae Carbon Dioxide Fixation Technology Applications Based on Carbon Capture: A Comprehensive Review

Author:

Li Gang1ORCID,Xiao Wenbo1,Yang Tenglun1ORCID,Lyu Tao2ORCID

Affiliation:

1. School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

2. School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK

Abstract

Microalgae carbon dioxide (CO2) fixation technology is among the effective ways of environmental protection and resource utilization, which can be combined with treatment of wastewater and flue gas, preparation of biofuels and other technologies, with high economic benefits. However, in industrial application, microalgae still have problems such as poor photosynthetic efficiency, high input cost and large capital investment. The technology of microalgae energy development and resource utilization needs to be further studied. Therefore, this work reviewed the mechanism of CO2 fixation in microalgae. Improving the carbon sequestration capacity of microalgae by adjusting the parameters of their growth conditions (e.g., light, temperature, pH, nutrient elements, and CO2 concentration) was briefly discussed. The strategies of random mutagenesis, adaptive laboratory evolution and genetic engineering were evaluated to screen microalgae with a high growth rate, strong tolerance, high CO2 fixation efficiency and biomass. In addition, in order to better realize the industrialization of microalgae CO2 fixation technology, the feasibility of combining flue gas and wastewater treatment and utilizing high-value-added products was analyzed. Considering the current challenges of microalgae CO2 fixation technology, the application of microalgae CO2 fixation technology in the above aspects is expected to establish a more optimized mechanism of microalgae carbon sequestration in the future. At the same time, it provides a solid foundation and a favorable basis for fully implementing sustainable development, steadily promoting the carbon peak and carbon neutrality, and realizing clean, green, low-carbon and efficient utilization of energy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Medicine

Reference158 articles.

1. How to Enhance Carbon Capture by Evolution of Microalgal Photosynthesis?;Li;Sep. Purif. Technol.,2022

2. Global Evaluation of Carbon Neutrality and Peak Carbon Dioxide Emissions: Current Challenges and Future Outlook;Yang;Environ. Sci. Pollut. Res.,2022

3. CO2 and Air Pollutant Emissions from Bio-coal Briquettes;Li;Environ. Technol. Inno.,2023

4. Malhi, G.S., Kaur, M., and Kaushik, P. (2021). Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability, 13.

5. The Central Trend in Crop Yields under Climate Change in China: A Systematic Review;Liu;Sci. Total Environ.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3