Origin of Smectite in Salinized Soil of Junggar Basin in Xinjiang of China

Author:

Xie HaixiaORCID,He Shuai,Huang Chuanqin,Tan Wenfeng

Abstract

In this paper, salinized soils with different degrees of salinity are sampled in Junggar Basin of Xinjiang of China. The X-ray diffraction, transmission electron microscopy, and inductively coupled plasma mass spectrometry are employed to investigate the morphology and distribution characteristics of smectite in salinized soil profiles. In the salinized soil profiles of this region, crystals of smectite are poor where lattice fringes are not parallel. In all soil layers, the content of smectite in the soil increases with the decrease in content of illite, which has demonstrated significant negative correlation (r = 0.79, n = 50, p < 0.01) between illite and smectite. This phenomenon has demonstrated that illite may be transformed into smectite in salinized soils of studied regions. In general, the transformation process of illite to smectite is affected by climate condition. The δ18O values of secondary carbonate in the 0–10 cm soil layers is higher than that in deep soil layers, which indicates that δ18O concentrates in surface soil and reflects temperature rise during soil layer formation. The δ13C values of secondary carbonate and soil organic matter in 0-10cm soil layers are higher than that in deep soil layers. It indicates that C4 plants were the main plants, which reflects that the climate was relatively dry during the formation of the surface soil. Thus, the climate during the surface soil formation is arid, which is not conducive for leaching K+ from illite of the 0–10 cm soil to form smectite. As a result, the content of the smectite becomes lowest in the soil surface. In the relative humid condition of deep soil layers, the K+ of the illite of the soil would be relative easily leached and more smectite may be formed. Furthermore, the presence of salt in the salinized soil would promote the formation of smectite in Junggar Basin of Xinjiang. A lot of Ca2+, Na + and Mg2+ in the soil solution of salinized soils would enter into the illite and occupy K+ positions. The studied result shows that the amount of smectite would increase with the increase of salt below 10cm of the soil layer, where the amount of smectite would be significantly correlated with soil electrical conductivity (r = 0.64, n = 39, p < 0.01). In the Junggar Basin in Xinjiang, therefore, the salinized soil below 10 cm would have the necessary water conditions and chemical components for illite transformation to smectite.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3